Seven technologies that will change the way we work in the near future

Seven technologies that will change the way we work in the near future

Gartner’s 2018 Hype Cycle for the Digital Workplace examines the impact of emerging tech

Richard Humphreys |

In its 2018 Hype Cycle for the Digital Workplace, research firm Gartner has outlined seven technologies that will transform the way we work in the next two to five years.

According to the report, speech recognition will reach the ‘plateau of productivity’ within the next two years.

"The effects of speech recognition can be seen on a daily basis. Consumers and workers increasingly interact with applications without touching a keyboard," said Matthew Cain, vice president and distinguished analyst at Gartner. "Speech-to-text applications have proliferated due to the adoption of chatbots and virtual personal assistants (VPAs) by businesses, and consumer adoption of devices with speech interactions including smartphones, gaming consoles and specifically, VPA speakers."

Chatbots and virtual assistants (VAs), meanwhile, represent a value-added implementation of speech recognition. VAs use artificial intelligence (AI) and machine learning (ML) to assist people or automate tasks. They listen to and observe behaviours, build and maintain data models, and predict and recommend actions.

“Increasingly, behaviour and event triggers will enhance virtual assistants,” said Van Baker, research vice president at Gartner. “App development leaders need to anticipate that their proliferation as more and more people and businesses move to conversational user interfaces. Businesses that haven't begun deploying AI to interact with customers and employees should start now, because customers and employees are increasingly expecting conversational interfaces to be available to address help desk and customer service issues.”

Chatbots are expected to exhibit huge growth over the next few years. While less than 4% of organisations have already deployed conversational interfaces (including chatbots), 38% of organisations are planning to implement or actively experimenting with the technology according to Gartner’s 2018 CIO Survey.

Although customer service is the area that uses the most chatbots, they are likely to be deployed elsewhere in the organisation. When chatbots are used as application interfaces, the way we work will change from ‘the user having to learn the interface’ to ‘the chatbot learning what the user wants’. This will greatly stimulate onboarding, training, productivity and efficiency inside the workplace.

In the same time frame, augmented analytics and personal analytics are making analytics available to more employees, allowing everyone the opportunity to become citizen data scientists.

Augmented analytics uses automated ML to transform how data is developed, consumed and shared. Data and analytics leaders should embrace augmented analytics as part of their digital transformation strategies to deliver more-advanced insights to a broader range of users – including citizen data scientists and, operational workers.


Gartner predicts that, by 2020, due in large part to the automation of data science tasks, citizen data scientists will surpass data scientists in terms of the amount of advanced analysis produced.

Personal analytics is the analysis of contextually relevant data to provide personalised insight, predictions and/or recommendations for the benefit of individual users.

“Personal analytics is the analytics layer of VPAs which, will reach mainstream adoption by 2020,” said Nick Ingelbrecht, research director at Gartner. “They are rooted in individuals’ engagement with technology and the way they generate insight from a variety of unstructured data, such as photos, social interactions, purchases, preferences and health indicators. They can take the forms of virtual personal health assistants, financial advice assistants and shopping assistants.”

This year, citizen data science enters the Hype Cycle. It forms the foundation of next-generation analytics. "It will make insights from data science and machine learning more accessible and pervasive in the organisation," said Carlie Idoine, research director at Gartner. “Central to enabling citizen data science are the aforementioned augmented analytics capabilities.”

Gartner anticipates that citizen data science will rapidly become an important part of the way we enable and scale data science capabilities throughout the organisation. Gartner also predicts that, by 2020, more than 40% of data science tasks will be automated, resulting in increased productivity and broader usage by citizen data scientists.

Adaptive learning platforms adjust the way instructional content is presented to users based on their responses or preferences and are used to optimise workforce digital dexterity. The technology is sliding into the Hype Cycle’s ‘trough of disillusionment’ and is on pace to reach the ‘plateau of productivity’ in the next two to five years.

“Adaptive learning platforms offer an important way to support and supplement workplace learning but they are difficult to implement,” said Glenda Morgan, research director at Gartner. "CIOs should approach adaptive learning projects as a large-scale curricular redesign undertaking. To this end, they should seek to identify faculty champions, find ways to incentivise the faculty, and make sure they have broad buy-in for these projects.”

Subscribe to the Technology Record newsletter

  • ©2024 Tudor Rose. All Rights Reserved. Technology Record is published by Tudor Rose with the support and guidance of Microsoft.